Abstract

The effect of the flux patterns promoted by a reactor's impeller distribution on the biological hydrogen (bioH2) production by a microbial consortium was determined. The flux patterns were analyzed and characterized by the application of computational fluid dynamics (CFD, ANSYSS Fluent 14.5). Two different mixing systems; predominantly axial (pitched blade PB4) or radial flow (Rushton) impellers were evaluated. Based on CFD results, four different impeller configurations were experimentally assessed to produce bioH2. The highest bioH2 productivity of 440 mL/Lh was determined with PB4 impellers, under the best configuration. In the second-best configuration, also obtained with the PB4, a bioH2 productivity of 407.94 mL/Lh was measured. The configurations based on Rushton impellers showed lower bioH2 productivity (177.065 mL/Lh average). Therefore, the experiments where the axial pumping was favored showed the highest bioH2 production as a consequence of the enhanced transfer of the bioH2 from the liquid phase to the reactor headspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.