Abstract

We examined the effects of fish predation on emergent insect-mediated methyl mercury (MeHg) flux across a gradient of MeHg contamination in experimental ponds. Emergent insects were collected from ponds with (n = 5) and without fish (n = 5) over a six week period using floating emergence traps. We found that the potential for MeHg flux increased with Hg contamination levels of the ponds but that the realized MeHg flux of individual insect taxa was determined by fish presence. Fish acted as size-selective predators and reduced MeHg flux by suppressing emergence of large insect taxa (dragonflies and damselflies) but not small insect taxa (chironomids and microcaddisflies). MeHg flux by small insect taxa was correlated with concentrations of MeHg in terrestrial spiders along the shorelines of the study ponds, demonstrating for the first time the cross-system transport of MeHg by emergent insects to a terrestrial spider.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.