Abstract

BackgroundExtremely low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems. A kind of very high frequency electromagnetic field was reported that it improved the symptoms of diabetic nephropathy (DN) which is a major complication of diabetes. However, few studies have examined the effects of ELFPMF DN at the present. The present study was designed to investigate the effects of ELFPMF on DN in streptozotocin (STZ)–induced type 1 diabetic rats.MethodsAdult male SD rats were randomly divided into three weight-matched groups: Control (non-diabetic rats without DN), DN + ELFPMF (diabetic rats with DN exposed to ELFPMF, 8 h/days, 6 weeks) and DN (diabetic rats with DN exposed to sham ELFPMF). Renal morphology was examined by light and electron microscopy, vascular endothelial growth factor (VEGF)-A and connective tissue growth factor (CTGF) were measured by enzyme linked immune sorbent assay.ResultsAfter 6 weeks’ ELFPMF exposure, alterations of hyperglycemia and weight loss in STZ-treated rats with DN were not found, while both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive one was that ELFPMF exposure attenuated the pathological alterations in renal structure observed in STZ-treated rats with DN, which were demonstrated by slighter glomerular and tubule-interstitial lesions examined by light microscopy and slighter damage to glomerular basement membrane and podocyte foot processes examined by electron microscopy. And then, the negative one was that ELFPMF stimulation statistically significantly decreased renal expression of VEGF-A and statistically significantly increased renal expression of CTGF in diabetic rats with DN, which might partially aggravate the symptoms of DN.ConclusionBoth positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive effect induced by ELFPMF might play a dominant role in the procession of DN in diabetic rats, and it is suggested that the positive effect should be derived from the correction of pathogenic diabetes-induced mediators.

Highlights

  • Low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems

  • The rest of rats were randomized into three weight-matched groups: non-diabetic rats without diabetic nephropathy (DN) control group (Control), diabetic rats with DN exposed to Extremely low frequency pulsed magnetic fields (ELFPMF) group (DN + ELFPMF) which were subjected to whole-body exposure to 15 Hz ELFPMF 8 h (09:00–17:00) everyday, 6 days a week for 6 weeks and diabetic rats with DN exposed to sham ELFPMF exposure group (DN)

  • The blood glucose levels were slightly lower in ELFPMF treated diabetic rats, there was no significant difference between DN + ELFPMF group and DN group (P > 0.05)

Read more

Summary

Introduction

Low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems. A kind of very high frequency electromagnetic field was reported that it improved the symptoms of diabetic nephropathy (DN) which is a major complication of diabetes. Few studies have examined the effects of ELFPMF DN at the present. The present study was designed to investigate the effects of ELFPMF on DN in streptozotocin (STZ)–induced type 1 diabetic rats. The increasing prevalence of DN worldwide represents a major societal issue because of the enormous expense associated with kidney replacement therapy [5]. Current therapies that aim to lower blood glucose are not effective in blocking renal damage, and cotreatment with renoprotective drugs often results in potential toxicity, poor tolerability and ineffectiveness for some percent of diabetic patients [6]. There is an urgent need to explore other non-pharmacological novel therapeutic modalities with efficacy and safety, when patients with DN require a combined treatment with an oral renoprotective drug to preserve normal renal function and to prevent or slow the progression of DN

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.