Abstract

Escherichia coli is the microorganism most commonly isolated from human urinary tract infections. Earlier studies by others have shown that bacterial attachment and production of toxins (e.g., lipopolysaccharides [LPS]) enhance recruitment of leukocytes to the infection site and mucosal inflammation. The mechanisms by which these changes occur have not been completely defined. In the present study, epithelial cell cultures isolated from the human ureter (UT cells) (A. Elgavish, J. J. Wille, F. Rahemtulla, and L. Debro, Am. J. Physiol. 261:C916-C926, 1991; J. J. Wille, J. Park, and A. Elgavish, J. Cell. Physiol. 150:52-58, 1992) served as a model system with which to explore the mechanisms of action of Escherichia coli and E. coli LPS in UT cells. E. coli adhered to UT cells and inhibited carrier-mediated sulfate uptake to half of that in untreated UT cells, suggesting that the intracellular pool of sulfate available for sulfation may be lower in infected cells and may lead to the production of undersulfated glycoconjugates. Incubation of UT cells with E. coli LPS inhibited carrier-mediated sulfate uptake to an extent similar to that caused by whole E. coli, indicating that the effect of E. coli on sulfate uptake may be mediated by LPS. LPS caused an increase in Na+ content in rapidly proliferating UT cells but not in quiescent cells. We postulated that this change in the intracellular ionic environment or changes coupled to it (e.g., pH or Ca2+ levels) may serve as a transducing signal. This possibility was supported by the fact that LPS stimulated clustering of ICAM-1 on the cell surface of rapidly proliferating but not quiescent UT cells. This study suggests that, in vivo, LPS stimulation of ICAM-1 clustering on the surface of the urothelium may allow more effective binding of leukocytes. This may be the mechanism underlying earlier findings in vivo indicating a role for LPS in the recruitment of leukocytes to the urinary tract as a host defense mechanism following urinary tract infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.