Abstract
Epigallocatechin-3-gallate (EGCG) is the most potent antioxidant polyphenol in green tea. In the present study, we investigated whether EGCG plays a role in the expression of transforming growth factor-beta1 (TGF-β1), protein kinase C (PKC) α/βII, and nuclear factor-kappaB (NF-κB) in glomerular epithelial cells (GECs) against high-glucose injury. Treatment with high glucose (30 mM) increased reactive oxygen species (ROS)/lipid peroxidation (LPO) and decreased glutathione (GSH) in GECs. Pretreatment with 100 µM EGCG attenuated the increase in ROS/LPO and restored the levels of GSH, whereas ROS, LPO, and GSH levels were not affected by treatment with 30 mM mannitol as an osmotic control. Interestingly, high-glucose treatment affected 3 separate signal transduction pathways in GECs. It increased the expression of TGF-β1, PKC α/βII, and NF-κB in GECs, respectively. EGCG (1, 10, 100 µM) pretreatment significantly decreased the expression of TGF-β1 induced by high glucose in a dose-dependent manner. In addition, EGCG (100 µM) inhibited the phosphorylation of PKC α/βII caused by glucose at 30 mM. Moreover, EGCG (1, 10, 100 µM) pretreatment significantly decreased the transcriptional activity of NF-κB induced by high glucose in a dose-dependent manner. These data suggest that EGCG could be a useful factor in modulating the injury to GECs caused by high glucose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.