Abstract

Encapsulating microbial cells in an alginate matrix enables high-rate anaerobic biological treatment and resource recovery by increasing cell concentration and retention time. To determine whether encapsulation protected microbial cells from inhibitors, copper(II), chromium(VI) (as dichromate), ammonium, and chloroform were amended to hydrogen-producing anaerobic microbial cells that were either suspended or encapsulated in a composite-coated alginate matrix. Encapsulation mitigated dichromate inhibition by 36% based on the dose-response curve slope but increased ammonium inhibition by 210% and had no effect on inhibition by chloroform. This was explained by effective concentrations in the beads after measuring partition coefficients. Encapsulation rendered copper(II) unavailable through apparent chelation because it protected both the hydrogen-producing and a methane-producing community from copper(II) despite its high effective concentration in encapsulation. Understanding the effects that the encapsulation of microbial cells has on chemical inhibition can help expand the application conditions of wastewater treatment or resource recovery and avoid unanticipated toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.