Abstract

ABSTRACTThe relaxation behaviors of the binary immiscible blends reflected on the plots of the storage modulus and the imaginary part of complex viscosity were investigated using the Maxwell and the Palierne models. It was revealed that the peaks in the high‐ and low‐frequency regions on the complex viscosity imaginary part plot are owing to the relaxations of the blend and deformed dispersed droplets, respectively. Based on these two models, six emulsion parameters (interfacial tension, relaxation times and viscosities of two components, and dispersed phase volume fraction) were investigated in terms of their effects on the shape features of the plots of the imaginary part of complex viscosity and the Cole–Cole. The results showed that the viscosities of two components and dispersed phase volume fraction play key roles in the radii of the two circular arcs on the Cole–Cole plot. Furthermore, the two circular arcs are well separated in the case of lower interfacial tensions and dispersed phase viscosities, shorter matrix relaxation times, and higher matrix viscosities and dispersed phase volume fractions. The total relaxation time of the deformed dispersed droplets increases with increasing the viscosities of two components, especially with decreasing the interfacial tension. Three types of polymer blends were prepared and their dynamic frequency sweep testing results demonstrated the effectiveness of the corresponding predicted results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39690.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.