Abstract

An auto-controlled climate system was used to study how a boreal bioenergy crop (reed canary grass, Phalaris arundinacea L., hereafter RCG) responded to a warming climate and elevated CO2. Over one growing season (April–September of 2009), RCG from young and old cultivations (3 years [3-year] and 10 years [10-year]) was grown in closed chambers under ambient conditions (CON), elevated CO2 (EC, approximately 700 μmol mol−1), elevated temperature (ET, ambient + approximately 3 °C) and elevated temperature and CO2 (ETC). The treatments were replicated four times. Throughout the growing season, the above-ground (leaf and stem biomass) and below-ground biomasses were measured six times, representing various developmental stages (early stages: the first three stages, and late stages: the last three stages). Compared to the growth observed under CON, EC enhanced RCG biomass growth over the whole growing season (p < 0.05), whereas ET increased RCG biomass growth in early stages but decreased growth in late stages, regardless of the cultivation age. However, the negative effect of ET later in the growing season was partially mitigated by CO2 enrichment. Compared to CON plants, the final total biomass was 18 % higher for 3-year plants and 8 % higher for 10-year plants grown under EC. In comparison, for 3-year and 10-year plants, the biomass was 5 and 3 % lower under ET and 7 and 4 % greater under ETC, respectively. Under EC, the below-ground growth contributed more to the total biomass growth compared to the above-ground portion. The opposite situation was observed under ET and ETC. The climate-related changes in biomass growth were smaller in the old cultivation than in the young cultivation due to the lower net assimilation rate and lower specific leaf area in the old cultivation plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.