Abstract

Shewanella decolorationis S12 was able to reduce various azo dyes in a defined medium with formate, lactate, and pyruvate or H(2) as electron donors under anaerobic conditions. Purified membranous, periplasmic, and cytoplasmic fractions from strain S12 analyzed, respectively, only membranous fraction was capable of reducing azo dye in the presence of electron donor, indicating that the enzyme system for anaerobic azoreduction was located on cellular membrane. Respiratory inhibitor Cu(2+), dicumarol, stigmatellin, and metyrapone inhibited anaerobic azoreduction by purified membrane fraction, suggesting that the bacterial anaerobic azoreduction by strain S12 was a biochemical process that oxidizes the electron donors and transfers the electrons to the acceptors through a multicompound system related to electron transport chain. Dehydrogenases, cytochromes, and menaquinones were essential electron transport components for the azoreduction. The electron transport process for azoreduction was almost fully inhibited by O(2), 6 mM of NO3-, and 0.9 mM of NO2-, but not by 10 mM of Fe(3+). The inhibition may be a result from the competition for electrons from electron donors. These findings impact on the understanding of the mechanism of bacterial anaerobic azoreduction and have implication for improving treatment methods of wastewater contaminated by azo dyes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.