Abstract

The influence of mold curvature, slide gate and magnetic forces on the steel flow in a slab mold was studied with a 3-D mathematical model. The slide gate application induces a biased flow toward the mold side where its opening is located in the submerged entry nozzle (SEN). Turbulence and asymmetry of flows are more intense in a curved mold than in a straight mold. The effect of an electromagnetic brake (EMBr), located in the discharging ports to control flow turbulence, is only appreciable when magnetic flux density is higher than 0.1 T. The magnetic flux density does not affect the velocity profile in the discharging ports in the SEN because its construction material is insulated. Increasing the magnetic flux density leads to a decrease of the discharging jets angle and to the elimination of the two upper roll flows. The use of the EMBr in a curved mold equipped with a slide gate eliminates the meniscus velocity spikes observed in the mold corners. These results help to demonstrate that EMBr eliminates the asymmetry in a curved mold even under the excessive turbulent conditions existing in curved continuous casting molds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.