Abstract

This study aimed to compare the physiologic effects of regular water consumption to those of electrolyte drink consumption in exercise capacity and recovery after exhaustive exercise. The participants were 10 healthy young men who exercised on a treadmill before and after receiving regular water and an electrolyte drink (3RINK) four weeks later. A 250-mL fluid volume was ingested 30 min before exercise and immediately after. Body composition, water metabolizing hormones, and body electrolytes were analyzed at rest (R), immediately after exercise (P0), and 1 h after exercise (P1). Moreover, serum lactic acid levels were measured to determine recovery. Total body water, intracellular, and extracellular water levels were higher after consuming 3RINK at P0 than at R. There was no interaction effect between the types of fluids and antidiuretic hormone, aldosterone, and renin levels. Hematocrit levels showed an interaction effect between the type of fluid and period. Sodium levels were significantly different between the different types of fluids at P0 and P1. Finally, an interaction effect was noted between each type of fluid and serum lactate levels. Thus, 3RINK intake before and after exhaustive exercise increased body capacity to retain water, improved exercise ability, and reduced exercise-related fatigue.

Highlights

  • Our bodies are composed of 60–70% water, 40% of which is contained within cells, and is an essential factor in sustaining life

  • The purpose of this study was to determine efficient hydration by comparing body composition, water-regulating hormones, body electrolytes, and recovery ability after exhaustive exercise based on the intake of regular water compared to that after consuming an electrolyte drink before and after performing exhaustive exercise

  • Cumulative urine volumes were higher in the group that ingested glucose drinks that did not contain electrolytes, which is consistent with our findings. These results suggested that electrolyte drinks can prevent water loss in the body by increasing water retention and reducing urine volume during dehydration associated with exercise [5,24]

Read more

Summary

Introduction

Our bodies are composed of 60–70% water, 40% of which is contained within cells, and is an essential factor in sustaining life. The importance of research on proper water intake is emphasized because the intake of adequate water to maintain water homeostasis is greatly influenced by sex, response according to the external temperature, calorie consumption, concentratingdiluting capacities of the kidneys, and water loss via excretions and secretions [2]. Physical activities, such as exercise, change the electrolyte levels and water homeostasis [3], and the lack of water and electrolytes results in dehydration, increased blood viscosity, and impaired oxygen tissue delivery [4]. Hyponatremia may occur, which can cause mental confusion and seizures [9,10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.