Abstract

This study investigated the influence of variations in the mixing ratio of ethylene carbonate (EC) to ethyl methyl carbonate (EMC) on the composition and effectiveness of the solid electrolyte interphase (SEI) in lithium-metal batteries. The SEI is crucial for battery performance, as it prevents continuous electrolyte decomposition and inhibits the growth of lithium dendrites, which can cause internal short circuits leading to battery failure. Although the properties of the SEI largely depend on the electrolyte solvent, the influence of the EC:EMC ratio on SEI properties has not yet been elucidated. Through electrochemical testing, ionic conductivity measurements, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy, the formation of Li2CO3, LiF, and organolithium compounds on lithium surfaces was systematically analyzed. This study demonstrated that the EC:EMC ratio significantly affected the SEI structure, primarily owing to the promotion of the formation of a denser SEI layer. Specifically, the ratios of 1:1 and 1:3 facilitated a uniform distribution and prevalence of Li2CO3 and LiF throughout the SEI, thereby affecting cell performance. Thus, precise control of the EC:EMC ratio is essential for enhancing the mechanical robustness and electrochemical stability of the SEI, thereby providing valuable insights into the factors that either enhance or impede effective SEI formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.