Abstract
Fatigue crack propagation (FCP) has been studied in a new class of materials termed metal-intermetallic laminate (MIL) composites (Ti-Al3Ti). Due to ease of fabrication and control over layer makeup, these MIL composites can be tailored to optimize the constituent properties for structural and higher performance aerospace applications. Effects of ductile reinforcement (titanium alloy) type, thickness, and volume fraction were systematically investigated in both arrester and divider orientations. Stress intensity (Kmax) values as large as 40 MPa√m were observed in the higher crack growth regime, indicating that the fracture toughness of the MIL composites is comparable to common structural metals. In both divider and arrester orientations, the overall fatigue crack growth rate showed an improvement with increasing Ti volume fraction and with increasing Ti thickness (at constant ductile-phase volume fraction). It is noted that the fatigue resistance of monolithic Al3Ti was improved by an order of magnitude by incorporating just 20 vol pct ductile Ti. In the divider orientation, toughening is obtained through plastically stretching the intact ductile Ti ligaments that bridge the crack wake, thus reducing the crack driving force. By virtue of its morphology, the arrester orientation provides toughening by trapping the crack front entirely at the metallic-intermetallic interfaces, thus requiring the crack to renucleate at each interface. Results are compared with specific crack growth rates of conventional monolithic alloys and other composite systems such as TiNb/γ-TiAl and Nb/Nb3Al. Owing to their low density (∼3.8 g/cc), Ti-Al MIL composites exhibited specific crack growth rates (da/dN vs ΔK/ρ) on par with tougher, but relatively denser, ductile metals such as Ti alloys and high-strength steels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.