Abstract

Anthropogenic nitrogen (N) deposition is a globally important source of N that is expected to increase with population growth. In southern California, N input from dry deposition accumulates on vegetation and soil surfaces of chaparral and coastal sage scrub (CSS) ecosystems during the summer and fall and becomes available as a pulse following winter rainfall. Presumably, N input will act to stimulate the productivity and N storage of these Mediterranean-type, semi-arid shrublands because these ecosystems are thought to be N limited. To assess whether dry-season N inputs alter ecosystem productivity and N storage, a field experiment was conducted over a 4-year period where plots were exposed to either ambient N deposition (control) or ambient + 50 kgN ha−1 y−1 (added N) that was added as NH4NO3 during the fall dry-season of each year. Plots exposed to added N had significantly higher accumulation of NH4 and NO3 on ion exchange resins that was due in part to direct fertilization and N mineralization, and the increase in N availability lead to a significant increase in NO3 leaching in chaparral but not CSS. Nitrogen addition also lead to an increase in litter and tissue N concentration and a decline in the C:N ratio, but failed to alter the ecosystem productivity and N storage of the chaparral and CSS shrublands over the 4-year study period. The reasons for the lack of a treatment response are unknown; however, it is possible that these semi-arid shrublands are not N limited, cannot respond rapidly enough to capture the ephemeral N pulse, are limited by other nutrients, or the N response is dependent on the amount and/or distribution of rainfall. These results have important implications for understanding the potential effects of anthropogenic N deposition on the C and N cycling and storage of Mediterranean-type, semi-arid shrublands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.