Abstract

Cu3Sb1–x–yGexInySe4 (0.02 ≤ x ≤ 0.12; 0.04 ≤ y ≤ 0.08) permingeatite compounds doped with Ge and In were prepared using solid-state synthesis. The phases and microstructures were analyzed, and the charge transport and thermoelectric properties were evaluated according to the Ge and In doping content. Most of the samples contained a single phase of permingeatite with a tetragonal structure; however, secondary phases (Cu0.875InSe2, In2Se3, and InSb) were detected in the samples with x = 0.12 and y = 0.08. Both the a-axis and c-axis lattice constants of permingeatite were increased by Ge and In doping, with a = 0.5651–0.5655 nm and c = 1.1249–1.1255 nm, but the change in lattice constant due to the change in doping amount was insignificant. The melting point of the sample double-doped with Ge and In was determined to be 736 K, which was lower than the melting point (741 K) of pure Cu3SbSe4. This lowering of the melting point was attributed to the formation of a solid solution. The electrical conductivity exhibited degenerate semiconductor behavior, decreasing with increasing temperature. As the Ge and In doping content increased, the carrier concentration and electrical conductivity increased; however, when x ≥ 0.12, the electrical conductivity did not increase further. The Seebeck coefficient exhibited positive values and p-type conduction characteristics. In addition, intrinsic transitions did not occur in the measurement temperature range, and the Seebeck coefficient increased as the doping level increased. The power factor exhibited a positive temperature dependence, and Cu3Sb0.86Ge0.08In0.06Se4 exhibited the highest value of 0.89 mWm–1K–2 at 623 K. As the temperature increased, the thermal conductivity tended to decrease because of the decreased lattice thermal conductivity and slightly increased electronic thermal conductivity. All the samples exhibited minimum thermal conductivities of 0.94–1.11 Wm–1K–1 at 523 K. At high temperatures, the double doping of Ge and In improved the thermoelectric performance; thus, the dimensionless figure of merit obtained at 623 K for Cu3Sb0.86Ge0.08In0.06Se4, was 0.47.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.