Abstract

This study aimed to investigate the effects of different plant polysaccharides (inulin, κ-carrageenan, and konjac glucomannan) as fat substitutes on the gel properties, microstructure, and digestion characteristics of myofibrillar protein (MP). The results revealed that incorporating inulin, κ-carrageenan, and konjac glucomannan significantly improved the water holding capacity, texture profiles, and rheological behavior of MP gels while limiting water fluidity. Among them, the MP-konjac glucomannan gel (1%, w/w) showed superior water retention and gel strength, demonstrating the most notable restriction on water translocation. Microstructural analysis observed that the MP gels with inulin, κ-carrageenan, and konjac glucomannan displayed a dense and well-clustered network structure, resulting in a more even distribution and compact gel structure. However, including 1.5% and 2% konjac glucomannan in MP mixed gels resulted in block-like clustering and larger agglomeration. Furthermore, the protein digestibility assessment indicated that polysaccharides incorporation significantly reduced the digestibility of MP, with konjac glucomannan demonstrating higher digestibility compared to inulin and κ-carrageenan groups. Overall, incorporating konjac glucomannan at a 1% incorporation (w/w) can effectively serve as a fat substitute in muscle food. This study will provide valuable insights for utilizing konjac glucomannan as a fat substitute in meat products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.