Abstract

Forging experiments were designed and carried out on a 3150 kN hydraulic press to investigate the effects of different processes on the microstructure evolution for 316LN steel. The forging processes included single-pass (upsetting) and multipass (stretching) deformations, and the experimental results indicated that the average grain size varied with forging processes. Moreover, the size had distinct differences at different positions in the workpiece. Meanwhile, numerical simulations were implemented to study the influence of temperature, strain, and strain rate on microstructure evolution. The results of experiments and simulations comprehensively demonstrated that dynamic, static, and meta-dynamic recrystallization could coexist in the hot forging process and that the recrystallization process could easily occur under the conditions of higher temperature, larger strain, and higher strain rate. Moreover, the temperature had more significant influence on both recrystallization and grain growth. A higher temperature could not only promote the recrystallization but also speed up the grain growth. Therefore, a lower temperature is beneficial to obtain refinement grains on the premise that the recrystallization can occur completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.