Abstract

Treatment of 60S subunits from yeast ribosomes with dicarboxylic acid anhydrides (maleic, dimethylmaleic and tetrahydrophtalic), which introduces negatively-charged residues, is accompanied by substantial dissociation of protein components (35-55%). In contrast, acetic anhydride or cyanate, which introduce uncharged groups, cause practically no protein release, even after extensive modification. Therefore, in addition to blocking lysine-RNA interactions, a large change in the electric charge of the proteins appears to be necessary to obtain dissociation. These results seem to indicate that lysine residues are not essential to ribosome integrity, while arginine-RNA interactions should play an important role in the maintenance of ribosomal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.