Abstract

BackgroundThe pathogenic road map leading to Alzheimer's disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-β (Aβ) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties.MethodologyIn this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Aβ- and tau-dependent pathology.Principal FindingsWe found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Aβ and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits.Conclusions and SignificanceOur data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD.

Highlights

  • Mitochondria-driven overproduction of reactive oxygen species (ROS) and imbalanced homeostasis for endogenous metals and zinc (Zn2+) in particular, are important co-factors in the development and progression of several neurological disorders, including Alzheimer’s Disease (AD; [1,2])

  • Principal Findings: We found that carnosine supplementation in 3xTg-Alzheimer’s disease (AD) mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Ab and completely rescues AD and aging-related mitochondrial dysfunctions

  • Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD

Read more

Summary

Introduction

Mitochondria-driven overproduction of reactive oxygen species (ROS) and imbalanced homeostasis for endogenous metals and zinc (Zn2+) in particular, are important co-factors in the development and progression of several neurological disorders, including Alzheimer’s Disease (AD; [1,2]). Mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.