Abstract

The aim of this study was to investigate the effects of lysine restriction on inflammatory responses in piglets. 38 male piglets with similar body weight of 9.62 kg were randomly divided into control group (basal diet) and lysine-restricted group (diet containing 70% lysine of the control diet). The results showed that lysine restriction increased the serum concentration of IgG an IgM. Piglets fed the lysine-restricted diet exhibited overexpression of interleukin-8 (IL-8) in the kidney (P < 0.05) and IL-6 and IL-4 in the spleen (P < 0.05). The mRNA abundances of IL-4 in the kidney (P < 0.05) and IL-10 in the liver (P < 0.05) were significantly lower in the lysine-restricted group compared with the control group. Meanwhile, lysine restriction increased the mRNA level of Tlr8 in the kidney (P < 0.05) but decreased the mRNA level of Tlr8 in the liver (P < 0.05). Finally, lysine restriction markedly enhanced extracellular signal regulated kinases 1/2 (ERK1/2) phosphorylation in the kidney and liver and nuclear transcription factor kappa B (NF-κB) was activated in the liver and spleen in response to dietary lysine restriction. In conclusion, lysine restriction affected inflammatory responses in the kidney, liver, and spleen via mediating serum antibody volume, inflammatory cytokines, Tlrs system, and ERK1/2 and NF-κB signals in piglets.

Highlights

  • Amino acids are critically important for the growth, health, and disease in piglets[1]

  • The results showed that lysine restriction markedly increased mRNA abundances of IL-8 in the kidney and IL-6 in the spleen (P < 0.05)

  • Inadequate lysine intake can limit the synthesis of inflammatory-related proteins[9]

Read more

Summary

Introduction

Amino acids are critically important for the growth, health, and disease in piglets[1]. We found that dietary different dosages of lysine influence intestinal morphology and expressions of amino acid transporters, which further mediate intestinal absorption and metabolism of amino acids[3,4]. Lysine deficiency in vivo and in vitro was investigated in our lab and the results showed that lysine deficiency affects cell cycle arrest, apoptosis, and amino acid metabolism, which may be associated with the mammalian target of rapamycin (mTOR) signal[5]. Dietary lysine deficiency impairs both antibody responses and cell-mediated immune responses[1,6,7]. The effect of lysine restriction on inflammatory response is still obscure. The present study aimed to investigate the inflammatory status of the kidney, liver, and spleen in piglets after exposure to a lysine-restricted diet

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.