Abstract

Ethylene-propylene-diene-termonomer (EPDM) rubber based fuel cell gasket compounds have been designed and explored the effects of various vulcanization systems on different properties. Three types of sulphur-accelerated vulcanization systems such as conventional vulcanization (con), semi-efficient vulcanization (sev) and efficient vulcanization (ev) and also a peroxide vulcanization system were employed in this study. The curing characteristics, tensile, hardness and compression set properties of the cured compounds were evaluated. The crosslink density was assessed by equilibrium swelling method in dodecane. The chemical stability of the cured EPDM compounds was also evaluated through an accelerated durability test (ADT) using a solution (1 M H2SO4 + 10 ppm HF) very close to the fuel cell atmosphere. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) were employed to investigate the chemical and physical changes of the cured EPDM compounds before and after exposure to the ADT solution over time. The results indicate that the EPDM compounds cured with peroxide exhibit the highest crosslink density with lowest compression set value at both room temperature and at elevated temperature. The FTIR and the corresponding SEM results show no significant chemical degradation of the peroxide cured EPDM compounds due to ADT ageing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.