Abstract

In this work, effects of Cu-rich phases on the microstructure evolution and creep deformation behavior of G115 steels with 1 (1Cu steel) and 2 wt% Cu (2Cu steel) were systematically investigated under 160–220 MPa at 650 °C. The results showed that dispersedly distributed Cu-rich phases played a vital role in retarding the microstructural degeneration and improving the creep strength. The Cu-rich phases inside grains could induce dislocation tangle and prohibit dislocation annihilation during creep, but they could be dissolved into the matrix due to the cutting effect of mobile dislocation lines. The Cu-rich phases at grain boundaries could hinder the migration of martensitic lath boundaries and thus delayed the creep failure behavior. Moreover, the independent Cu-rich phases at grain boundaries could provide heterogeneous nucleation sites for Laves phases, which strengthening pinning effect. As a result, compared with the 1Cu steel, the creep threshold stress of the 2Cu steel was enhanced from 103.36 to 117.93 MPa, and the creep lifetime was also prolonged markedly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.