Abstract

High efficiency solar cells require good back surface field passivation and high back reflectance in the rear Al region. In module processes, wafer-based solar cell can break through stress during soldering uneven rear aluminum surfaces - a serious problem that affects throughput. This work examined rear surfaces with respect to controllable process factors such as ramping and cooling rates during rapid thermal processing, and the fineness of aluminum powder used in the screen-printed paste. A faster ramp up rate resulted in a uniform temperature gradient between the aluminum and silicon surfaces. As a results, the bumps on the aluminum surface were small and of high density. Fine aluminum metal powder in the paste for screen-printing contact points resulted in large distribution, high density bumps. Bumps formed during cooling in metallization, their sizes and densities were dependent the on uniformity of the aluminum and silicon liquid wetting of the silicon surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.