Abstract

The effects of cold deformation on the evolution of the microstructure and mechanical properties of Fe-Cr-Ni-Mo-Ti maraging steel were investigated. The microstructural changes during cold rolling were observed using optical microscopy (OM), electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD), which were related to the mechanical properties as measured by micro-hardness and tensile testing. The remaining austenite in the as-quenched specimens was found to transform into martensite during cold deformation. High-density dislocations were produced in the martensite matrix by plastic deformation, which accelerate the aging response by promoting the formation of η-Ni3Ti precipitates. The strain hardening was partially conserved due to static recovery during the aging process. The cold rolled steel showed a very high hardening response, resulting in an increase in yield strength during the subsequently aging treatment at 510°C, with a detectable loss in ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.