Abstract

Determining effects of elevated CO2 and N on photosynthetic thermotolerance is critical for predicting plant responses to global warming. We grew Hordeum vulgare (barley, C3) and Zea mays (corn, C4) at current or elevated CO2 (370, 700 ppm) and limiting or optimal soil N (0.5, 7.5 mmol/L). We assessed thermotolerance of net photosynthesis (Pn), photosystem II efficiency in the light (Fv'/Fm'), photochemical quenching (qp), carboxylation efficiency (CE), and content of rubisco activase and major heat-shock proteins (HSPs). For barley, elevated CO2 had no effect on Pn, qp, and CE at both high and low N and only a positive effect on Fv'/Fm' at high N. However, for corn, Pn, Fv'/Fm', qp, and CE were decreased substantially by elevated CO2 under high and low N, with greater decreases at high N for all but qp. The negative effects of high CO2 during heat stress on photosynthesis were correlated with rubisco activase and HSPs content, which decreased with heat stress, especially for low-N corn. These results indicate that stimulatory effects of elevated CO2 at normal temperatures on photosynthesis and growth (only found for high-N barley) may be partly offset by neutral or negative effects during heat stress, especially for C4 species. Thus, CO2 and N effects on photosynthetic thermotolerance may contribute to changes in plant productivity, distribution, and diversity in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.