Abstract

The effects of carbon dioxide content on the catalytic performance and coke formation of nickel catalyst supported on mesoporous nanocrystalline zirconia with high surface area and pure tetragonal crystalline phase were investigated in methane reforming with carbon dioxide. The samples were characterized by XRD, BET, TPR, TPO, TPH, TEM, and SEM techniques. The catalyst prepared showed high surface area and a mesoporous structure with a narrow pore size distribution. The obtained results revealed that the increase in CO 2 content increased the methane conversion and stability of the catalyst and significantly reduced the coke deposition. The TPH analysis showed that several species of carbon with different reactivities toward hydrogenation were deposited on the spent catalysts employed under different CO 2 contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.