Abstract
The effects of cluster correlations have been studied in the $^{12}\mathrm{C}+^{12}\mathrm{C}$ reaction at 50 MeV/nucleon, using three antisymmetrized molecular dynamics (AMD) models, the AMD (AMD/D) without any additional cluster correlations, AMD/D-COALS with nucleon correlations based on a coalescence prescription for light cluster formations with $A\ensuremath{\le}4$, and AMD-cluster with an extended cluster correlation in two-nucleon collision processes and a special treatment for intermediate fragment formation with $A\ensuremath{\le}9$. The angular distributions and energy spectra of fragments have been simulated and compared with the available experimental data. It is found that the cluster correlations take a crucial role to describe the productions of light charged particles (LCPs) and intermediate mass fragments (IMFs), and the AMD-cluster studied here provides a consistent overall reproduction of the experimental data. It is also shown that the significant effects of the secondary decay processes are involved for the fragment production besides the dynamical productions in the AMD stage. Detailed LCP and IMF production mechanisms involved in the intermediate energy heavy ion collisions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.