Abstract

Presently, climate change has increased the frequency of extreme meteorological events such as tropical cyclones. In the western Pacific basin, these cyclones are called typhoons, and in this area, around Taiwan Island, their frequency has almost doubled since 2000. When approaching landmasses, typhoons have devastating effects on coastal vegetation. The increased frequency of these events has challenged the survival of coastal plant species and their posttyphoon recovery. In this study, a population of coastal gynodioecious Ficus pedunculosa var. mearnsii (Mearns fig) was surveyed for two years to investigate its recovery after Typhoon Morakot, which occurred in August 2009. Similar to all the Ficus species, the Mearns fig has an obligate mutualistic association with pollinating fig wasp species, which requires syconia (the closed Ficus inflorescence) to complete its life cycle. Moreover, male gynodioecious fig species produces both pollen and pollen vectors, whereas the female counterpart produces only seeds. The recovery of the Mearns fig was observed to be rapid, with the production of both leaves and syconia. The syconium:leaf ratio was greater for male trees than for female trees, indicating the importance of syconium production for the wasp survival. Pollinating wasps live for approximately 1 day; therefore, receptive syconia are crucial. Every typhoon season, few typhoons pass by the coasts where the Mearns fig grows, destroying all the leaves and syconia. In this paper, we highlight the potential diminution of the fig population that can lead to the extinction of the mutualistic pair of species. The effects of climate change on coastal species warrant wider surveys.

Highlights

  • Current climate changes induce markedly varying environmental changes [1], which increasingly affect ecosystems [2]

  • One of the most pronounced changes in the climate patterns is the increased frequency and intensity of tropical cyclones [3,4], with a striking example being Taiwan, which experienced an average of 3.3 cyclones

  • We focused on the Mearns fig population in the Hengchun Peninsula in the south of Taiwan after the occurrence of Typhoon Morakot

Read more

Summary

Introduction

Current climate changes induce markedly varying environmental changes [1], which increasingly affect ecosystems [2]. One of the most pronounced changes in the climate patterns is the increased frequency and intensity of tropical cyclones [3,4], with a striking example being Taiwan, which experienced an average of 3.3 cyclones This cooperation grant was used for data collection and analysis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.