Abstract

Nickel-rich layered LiMO2 (M = transition metal) oxides doped with iron exhibit high oxygen evolution reaction (OER) activity in alkaline electrolytes. The LiMO2 oxides offer the possibility of investigating the influence of the number of d electrons on OER by tuning the oxidation state of M via chemical or electrochemical delithiation. Accordingly, we investigate here the electrocatalytic behavior of LiNi0.7Co0.3O2 and LiNi0.7Co0.2Fe0.1O2 before and after chemical delithiation. In addition to varying the oxidation state of the transition-metal ions, we find that chemical delithiation also affects the local chemical environment and morphology. The electrochemical response differs depending on whether the delithiation occurred ex situ chemically or in situ during the electrocatalysis. The results point to the important role of in situ transformation in LiMO2 in alkaline electrolytes during electrocatalytic cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.