Abstract

Oxygen K-edge X-ray absorption spectra (XAS) of aqueous chloride solutions have been measured for Li(+), Na(+), K(+), NH(4)(+), C(NH(2))(3)(+), Mg(2+), and Ca(2+) at 2 and 4 M cation concentrations. Marked changes in the liquid water XAS are observed upon addition of the various monovalent cation chlorides that are nearly independent of the identity of the cation. This indicates that interactions with the dissolved monovalent cations do not significantly perturb the unoccupied molecular orbitals of water molecules in the vicinity of the cations and that water-chloride interactions are primarily responsible for the observed spectral changes. In contrast, the addition of the divalent cations engenders changes unique from the case of the monovalent cations, as well as from each other. Density functional theory calculations suggest that the ion-specific spectral variations arise primarily from direct electronic perturbation of the unoccupied orbitals due to the presence of the ions, probably as a result of differences in charge transfer from the water molecules onto the divalent cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.