Abstract

RNA interference (RNAi) technology can achieve efficient and specific silencing of Caspase3 gene expression, thus providing new options for anti-apoptosis treatment. However, delivering siRNA to specific cells and tissues in the body is a significant challenge. Therefore, we aim to construct a functionalized single-walled carbon nanotube (F-CNT) bound to siRNA from Caspase3. The obtained gene transfer carrier F-CNT-siCas3 not only demonstrated a good water solubility and biocompatibility, but also had a high transfection efficiency of up to 82%, which significantly downregulated the expression level of the Caspase3 gene miRNA and protein in primary cardiomyocytes. Furthermore, it was verified by in vivo experiments that Caspase3 gene silencing had obvious protective effects on myocardial cell apoptosis, ventricular remodeling, and cardiac function in Sprague-Dawley (SD) rats after coronary artery ligation. This study may provide an important theoretical basis for the application of F-CNT in vivo siRNA gene therapy to treat cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.