Abstract

This research aimed to evaluate the effects of Capsicum oleoresin (CAP) supplementation on rumen fermentation in vivo and In vitro, and lactation performance in buffaloes. In the experiment in vitro, 2 × 5 factorial design was carried out according to two temperatures (normal temperature: 39 °C; hyperthermal temperature: 42 °C) and five CAP concentrations (0 mg/L; 2 mg/L; 20 mg/L; 200 mg/L; 2000 mg/L). In the experiment in vivo, four multiparous mid-lactating Mediterranean buffaloes (body weight: 640.08 ± 17.90 kg) were randomly allocated to four treatments according to 4 × 4 Latin square design for CAP supplementation in four dosages (0 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg of dry matter). The experiment’s results In vitro showed that hyperthermal temperature affected all fermentation characteristics measured in this research. CAP decreased the pH, short-chain fatty acids concentration, and percentages of propionate, butyrate, isobutyrate, valerate, and caproate, while increasing the percentage of acetate and the ratio of acetate to propionate at normal temperature (p ≤ 0.05). In the experiment in vivo, CAP decreased the percentage of propionate and quadratically affected acetate percentage in rumen fluid (p ≤ 0.05). CAP reduced rectal temperature and respiratory rates (p ≤ 0.05) and tended to increase dry matter intake quadratically (p ≤ 0.10). For lactation performance, CAP increased milk yield and milk lactose yield (p ≤ 0.05), and tended to increase milk protein yield (p ≤ 0.10). In conclusion, CAP modified rumen fermentation characteristics in vivo and In vitro and had beneficial effects on lactation performance in buffaloes during summer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.