Abstract

The potent activity of 2-substituted estra-1,3,5(10)-triene-3-O-sulfamates against the proliferation of cancer cells in vitro and tumours in vivo highlights the therapeutic potential of such compounds. Optimal activity is derived from a combination of a 2-XMe group (where X = CH(2), O or S), a 3-O-sulfamate group in the steroidal A-ring and a H-bond acceptor around C-17 of the D-ring. Herein, we describe the synthesis and anti-proliferative activities of a series of novel 2-substituted estra-1,3,5(10)-triene-3-O-sulfamates bearing heterocyclic substituents (oxazole, tetrazole, triazole) tethered to C-17. In vitro evaluation of these molecules revealed that high anti-proliferative activity in breast and prostate cancer cells lines (GI(50) of 340-850 nM) could be retained when the heterocyclic substituent possesses H-bond acceptor properties. A good correlation between the calculated electron density of the heterocyclic ring and anti-proliferative activity was observed. Docking of the most active compounds into their putative site of action, the colchicine binding site of tubulin, suggests that they bind through a different mode to the previously described bis-sulfamate derivatives and 1 and 2, which possess similar in vitro activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.