Abstract

Injection of sub-millimeter bubbles is considered a promising technique for enhancing natural convection heat transfer for liquids. So far, we have experimentally investigated heat transfer characteristics of laminar natural convection flows with sub-millimeter bubbles. However, the effects of the bubble size on the heat transfer have not yet been understood. The purpose of this study is to clarify the effects of the bubble size on the heat transfer enhancement for the laminar natural convection of water along a vertical heated plate with uniform heat flux. Temperature and velocity measurements, in which thermocouples and a particle tracking velocimetry technique are, respectively used, are conducted to investigate heat transfer and flow characteristics for different bubble sizes. Moreover, two-dimensional numerical simulations are performed to comprehensively understand the effects of bubble injection on the flow near the heated plate. The result shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection ranges from 1.3 to 2.2. The result also shows that for a constant bubble flow rate, the heat transfer coefficient ratio increases with a decrease in the mean bubble diameter. It is expected from our estimation based on both experimental data and simulation results that this increase results from an increase in the advection effect due to bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.