Abstract

Fine control of orofacial musculature is necessary to precisely accelerate and decelerate the articulators across exact distances for functional speech and coordinated swallows (Amerman & Parnell, 1990; Benjamin, 1997; Kent, Duffy, Slama, Kent, & Clift, 2001). Enhanced understanding of neural control for such movements could clarify the nature of and potential remediation for some dysarthrias and other orofacial myofunctional impairments. Numerous studies have measured orolingual force and accuracy during speech and nonspeech tasks, but have focused on young adults, maximum linguapalatal pressures, and upright positioning (O’Day, Frank, Montgomery, Nichols, & McDade, 2005; Solomon & Munson, 2004; Somodi, Robin, & Luschei, 1995; Youmans, Youmans, & Stierwalt, 2009). Patients’ medical conditions or testing procedures such as concurrent neuroimaging may preclude fully upright positioning during oral motor assessments in some cases. Since judgments about lingual strength and coordination can influence clinical decisions regarding the functionality of swallowing and speech, it is imperative to understand any effects of body positioning differences. In addition, sex differences in the control of such tasks are not well defined. Therefore, this study evaluated whether pressures exerted during tongue movements differ in upright vs. supine body position in healthy middle-aged men and women. Twenty healthy middle-aged adults compressed small air-filled plastic bulbs in the oral cavity at predetermined fractions of task-specific peak pressure in a randomized block design. Tasks including phoneme repetitions and nonspeech isometric contractions were executed in upright and supine positions. Participants received continuous visual feedback regarding targets and actual exerted pressures. Analyses compared average pressure values for each subject, task, position, and effort level. Speech-like and nonspeech tongue pressures did not differ significantly across body position or sex groups. Pressure matching was significantly less accurate at higher percentages of maximum pressure for both tasks. These results provide preliminary comparative data for the clinical assessment of individuals with orofacial myofunctional and neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.