Abstract

An advanced ventricular assist device (VAD), which is under development in our institution, has specific features that allow changes in the axial rotor position and pump performance by intrapump pressure difference. However, performance could be influenced by the pump orientation because of the effect of gravity on the rotor position. The purpose of this study was to evaluate the effects of pump orientation on the pump performance, including pulse pressure and regurgitant flow through the pump when the pump was stopped. Bench testing of the VAD was performed on a static or pulsatile mock loop with a pneumatic device to simulate the native ventricle. The pump performance, including pressure-flow curve, pulsatility, and regurgitant flow, was evaluated at several angles, ranging from -90° (inlet pointed upward) to +90° (inlet pointed downward) at pump speeds of 2000, 2500, 3000, and 3500 rpm. The pump performance was slightly lower at +90° at all rotational speeds, compared with -90°. The pulse pressure on the pulsatile mock loop (80 bpm) was 50 mmHg without pump support, remained at 50 mmHg during pump support, and was not changed by orientation (-90°, 0°, and +90°). When the pump was stopped, the regurgitant flow was near 0 L/min at all angles. Pump orientation had a minor effect on pump performance, with no effect on pulse pressure or regurgitant flow when the pump was stopped. This indicates that the effect of gravity on the rotor assembly is insignificant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.