Abstract

Perfusion plays a key role in tumor proliferation and therapeutic response. Tumor heterogeneity necessitates use of the highest spatial resolution to monitor metabolic correlates of blood flow changes. This is best achieved with 1H NMR spectroscopy, which permits noninvasive acquisition of high resolution spectroscopic images (SI) of subcutaneous tumors in a relatively short scan time (e.g., 12-25 microliters voxels with signal-to-noise ratio 7:1 in 30 min at 4.7 T). This study seeks to identify 1H spectroscopic indices of tumor blood flow. Proton SI of subcutaneous murine RIF-1 tumors were recorded (a) before and after administration of nicotinamide (1 g/kg) to increase blood flow, and (b) before and after hydralazine (10 mg/kg) to decrease flow. Nicotinamide produced a significant decrease in the total choline peak amplitudes, which subsequent high resolution NMR spectroscopy of tumor extracts revealed to be due to decreases in phosphocholine and glycerophosphocholine. The deamidation of nicotinamide to nicotinic acid, which is known to have hypolipidemic effects and to stimulate the formation of prostaglandins, may have sufficiently altered lipid metabolism to affect the in vivo concentration of the NMR-visible choline-containing compounds. The main effect of hydralazine was a significant increase of lactate, which is consistent with a reduction of tumor blood flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.