Abstract
Effects of doping high pressure methane diffusion flames with benzene, cyclo-hexane and n-hexane were investigated to assess the sooting propensity of three hydrocarbons with six carbons at elevated pressures. Amount of liquid hydrocarbons added to methane constituted 7.5% of the total carbon content of the fuel stream. The pressure range investigated extended up to 10 bar and the experiments were carried out in a high pressure combustion chamber capable of establishing stable laminar diffusion flames with various fuels at elevated pressures and was used in similar experiments previously. Temperatures and soot volume fractions were measured using the spectral soot emission technique capturing spectrally-resolved line-of-sight intensities which were subsequently inverted using an Abel type algorithm to obtain radial distributions assuming that the flames are axisymmetric. The total mass carbon flow of the fuel stream was kept constant at 0.524 mg/s in neat methane, benzene-doped methane, cyclo-hexane-doped methane, and n-hexane-doped methane flames to have tractable measurements at all pressures. Measured maximum soot volume fractions and evaluated maximum soot yields showed that benzene-doped methane flame had the higher values than cyclo-hexane doped methane flames which in turn had higher values than n-hexane doped methane flames at all pressures. Sooting propensity dependence of the three hydrocarbons on pressure can be ranked as, in descending order, n-hexane, cyclo-hexane, and benzene; however, the difference between pressure dependencies of n-hexane and cyclo-hexane was within the measurement error margins. Ratio of soot yields of benzene to n-hexane doped flames changed from about 2 at 2 bar to 1.2 at 10 bar; the ratio of benzene to cyclo-hexane doped flames showed similar trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.