Abstract

The effects of the base composition and dopants on the saturation magnetization and coercivity of hexaferrites BaAlxFe12–xO19, SrAlxFe12–xO19, BaGaxFe12–xO19, SrGaxFe12–xO19, BaScxFe12–xO19 and SrScxFe12–xO19 have been studied. Isomorphic substitutions of Al2O3, Ga2O3, and Sc2O3 for Fe2O3 in barium and strontium ferrites are found to increase coercivity due to increasing crystallographic anisotropy constant and to reduce the saturation magnetization value. Processes controlling microstructure formation, specifically recrystallization processes, are shown to have a noticeable effect on the level of properties of the ferrites under study with the use of dopants. The most efficient dopants are boron, calcium, and silicon oxides, which provide the formation of relatively fine-grained structures. The increased coercivity upon doping with these dopants is also due to the formation of grain-boundary interlayers of a nonmagnetic glassy phase and the associated efficient retardation of moving domain walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.