Abstract

Effects of boron (B) addition on microstructure and high-temperature stress rupture properties of a heat-treated high chromium polycrystalline Nickel-based superalloy were investigated by adjusting B content (0, 0.016 wt%, 0.048 wt%, 0.09 wt%). The results indicated that the grain boundary characteristics were altered by B addition, such as the morphologies of the MC carbides, M23C6 carbides and precipitation of γ′ particles along grain boundaries. Meanwhile, it was confirmed that B existed in the form of Cr-rich M5B3 borides in the boron-containing alloys. Moreover, boron addition aggravated the inhomogeneity of microstructures, and reduced the volume fraction of secondary γ′ particles. Additionally, the rupture life was remarkably improved as the B content was increased to 0.016 wt%, whilst the elongation tended to improve as the B content was increased to 0.048 wt%. The improvement of stress rupture properties was mainly contributed to the modification of the grain boundary characteristics which retarded crack nucleation and propagation at grain boundaries. However, with excessive addition of B, the stress rupture properties were reduced significantly, as the solid solution strengthening and precipitation strengthening tended to be weakened by B addition, in addition the incipient melting regions and lager size borides promoted the intragranular crack nucleation and propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.