Abstract

The effects of atomic short-range order on the properties of Pb(Zr(1-x)Ti(x))O3 alloy in its morphotropic phase boundary (MPB) are predicted by combining first-principles-based methods and annealing techniques. Clustering is found to lead to a compositional expansion of this boundary, while the association of unlike atoms yields a contraction of this region. Atomic short-range order can thus drastically affect properties of perovskite alloys in their MPB, by inducing phase transitions. Microscopic mechanisms responsible for these effects are revealed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.