Abstract
Soot aerosols have become the second most important contributor to global warming after carbon dioxide in terms of direct forcing, which is the dominant absorber of visible solar radiation. The optical properties of soot aerosols depend strongly on the mixing mechanism of black carbon with other aerosol components and its hygroscopic properties. In this study, the effects of atmospheric water on the optical properties of soot aerosols have been investigated using a superposition T-matrix method that accounts for the mixing mechanism of soot aerosols with atmospheric water. The dramatic changes in the optical properties of soot aerosols were attributed to its different mixing states with atmospheric water (externally mixed, semi-embedded mixed, and internally mixed). Increased absorption is accompanied by a larger increase in scattering, which is reflected by the increased single scattering albedo. The asymmetry parameter also increased when increasing the atmospheric water content. Moreover, atmospheric water intensified the radiative absorption enhancement attributed to the mixing states of the soot aerosols, with values ranging from 1.5 to 2.5 on average at 0.870μm. The increased absorption and scattering ability of soot aerosols, which is attributed to atmospheric water, exerted an opposing effect on climate change. These findings should improve our understanding of the effects of atmospheric water on the optical properties of soot aerosols and their effects on climate. The mixing mechanism for soot aerosols and atmospheric water is important when evaluating the climate effects of soot aerosols, which should be explicitly considered in radiative forcing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.