Abstract

In this study, the effects of applied pressure during solidification on the microstructure and mechanical properties of cylindrical shaped ductile iron castings were investigated. Magnesium treated cast iron melts were solidified under atmospheric pressure as well as 25, 50 and 75 MPa external pressures. Microstructure features of the castings were characterized using image analysis, optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques. Tensile properties, toughness and hardness of the castings were also measured. The results showed that average graphite nodule size, free graphite content and ferrite content of the castings decreased and pearlite and eutectic cementite contents increased as the applied pressure was raised from 0 to 75 Mpa. Graphite nodule count was first increased by raising the applied pressure up to 50 MPa and then decreased. The highest graphite nodule count was obtained at 50 MPa applied pressure. The microstructural changes were associated with the improved cooling rate and the expected changes in the corresponding phase diagram of the alloy under pressure. The ultimate tensile strength (UTS), yield point strength (0.2% offset) and fracture toughness of the castings were improved when the applied pressure was raised from 0 to 50 MPa. Further increase of the applied pressure resulted in slight decrease of these properties due to the formation of more cementite phase in structures as well as reduced graphite nodule count. Hardness of the castings continuously increased with increasing the applied pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.