Abstract

The effect of ADH upon the intracellular potential and the resistance of inner and outer borders of the transport pathway was investigated on isolated skins of Rana temporaria. Within 40 min after ADH (100--300 mU/ml), the intracellular potential under short-circuit conditions decreased to about 40% of the control value (--79 +/- 4 mV), concomitant with an increase in the short-circuit current to about 160% of the control value. Amiloride, applied when steady values under ADH had been reached, caused an immediate rise of the intracellular potential to values typical for control conditions. This confirms (i) the intracellular location of the microelectrode and the absence of impalement artifacts, and (ii) the ineffectiveness of ADH upon the electromotive forces of the inner border. ADH had no effect upon the intracellular potential after blockage of the Na entry by Amiloride. The equilibrium potential of the outer border was estimated to be about +20mV under the influence of ADH. As this value is considerably less positive than might be expected for the chemical potential of Na, a significant contribution of ions other than Na to the outer border conductance and equilibrium potential is implicated. The resistance of the outer border was more significantly decreased than that of the active transcellular pathway after ADH due to an increase in the inner border resistance, which exceeded that of the outer border after ADH. The effect of ADH upon the outer membrane characteristics would be underestimated by a factor of two, if the alterations of the electrical potential difference were not taken into consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.