Abstract

AbstractThe effect of annealing on the microstructural evolution and mechanical properties of high‐density polyethylene parts molded via gas‐assisted injection molding was investigated using scanning electron microscopy, differential scanning calorimetry, two‐dimensional wide‐angle X‐ray diffraction and tensile testing. The results indicated that a variety of annealing temperatures could induce considerable variations in the hierarchical structures, crystallinity, lamellar thickness and yield stress of the molded bars. According to these results, the annealing temperatures could be divided into three regions. In the low‐temperature region of annealing at 80 °C, the spatial variation of the superstructure developed along the thickness direction and mechanical properties of the annealed sample were mainly unchanged and similar to those of the original specimen. At 100 and 120 °C, the intermediate temperature region of annealing, the thickness of the crystals, degree of orientation and yield stress of annealed samples were greatly improved. Finally, at 127 °C, the degree of orientation decreased and yield stress slightly improved, an indication of the high‐temperature annealing region being characterized by increasing melting/recrystallization and causing relaxation of oriented molecular chains. A model is proposed to interpret the mechanism of the annealing treatment of the samples at various temperatures. © 2013 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.