Abstract

Introductions of exotic species pose a significant threat to the persistence of many native populations, including many inland fishes. In 1994, piscivorous lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake, Yellowstone National Park, Wyoming, USA, one of the last strongholds of the native Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). Predation by lake trout is expected to lead to a substantial decline in the native cutthroat trout population, which may have significant negative consequences for terrestrial predators that depend on cutthroat trout for prey and for the recreational fishery of the Park. We developed a matrix demographic model for the cutthroat trout population in Yellowstone Lake to identify the life stages that are most critical for understanding population dynamics. Parameter estimates (vital rates) were manipulated to explore the possible consequences of lake trout invasion. Comparisons of our results with current estimates of population trend and age structure suggested that our model reflected current conditions of the system. Elasticity analysis of the model revealed that population growth was most sensitive to annual survival of young trout, the group that is expected to be most vulnerable to lake trout predation. Projection of our deterministic model suggested that, in addition to a decline in abundance of cutthroat trout, the effects of lake trout may be manifest as changes in age and breeding structure of the population. Simulations of a stochastic version of the model indicated that a 60% or greater decline in the cutthroat trout population could be expected within 100 years if the lake trout population were permitted to grow uncontrolled. However, an effective control strategy that prevented the establishment of a large population of lake trout substantially reduced population decline, although the reduction in the availability of adult trout to terrestrial predators and anglers may be still be substantial (20–40%). In addition to current control activities in place in the Park, we recommend a renewed emphasis on understanding and monitoring juvenile life stages of cutthroat trout. Our results demonstrate the value of existing data sets for developing models to estimate the potential impact of biological invasions on the management and conservation of native populations, especially when opportunities and resources for additional empirical studies are limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.