Abstract
We have investigated the roles of reactive oxygen species (ROS) in bleomycin (BLM)-induced gene mutations in Chinese hamster ovary (CHO) cells using a superoxide dismutase (SOD) inhibitor, triethylenetetramine (TRIEN), and a SOD mimic, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), to lower and increase intracellular “SOD activity”, respectively. Pretreatment of CHO cells with TRIEN (1 mM) for 1 h enhanced the mutagenic response of BLM (5–50 μg/ml, 1 h treatment) in the hypoxanthine-guanine phosphoribosyltransferase ( hprt) locus in CHO cell clone K1-BH4 (CHO/HPRT assay) and the xanthine-guanine phosphoribosyltransferase ( gpt) gene in a CHO-K1 cell derivative AS52 (AS52/GPT assay). Pretreatment with TEMPOL (1 mM) for 1 h decreased the BLM (20–100 μg/ml, 1 h treatment) mutagenicity in the AS52/GPT assay. The mutagenic response of BLM appears to be modulated by the intracellular level of ‘SOD activity’ and hence the intracellular level of ROS. These data provide further evidence for the involvement of ROS in bleomycin mutagenesis in mammalian cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.