Abstract
It is widely believed that mammalian CNS axons have little regenerative capacity because their environment is non-permissive to regrowth. This viewpoint is based, in large part, on the fact that in virtually all previous studies on regeneration following spinal cord injury, regenerated axonal projections have been few in number, quite short, and considered to be mostly aberrant. As a result, motor recovery has been very limited in both experimental preparations and the human. In this chapter, we describe use of a neonatal, spinally transected animal model in which selected spinal cord segments were carefully replaced with equivalent tissue from embryonic tissue of the same species. We demonstrate that the new spinal environment is indeed permissive, and reconstruction is possible of neural connections, which are similar to the pre-injury, normal projections. Moreover, the distribution and number of regenerated axons are closely related to the extent of functional motor recovery. Our results suggest that contrary to doctrinaire thought, the mammalian CNS possesses a remarkable capacity for regrowth. For this to be efficacious, however, regenerating axons must contact the inherent, pre-injury guidance system, whose cues were used for establishing appropriate neural connections in the developing animal, and are retained in the adult. It is argued that by use of these guidance cues, regenerating axons that traverse the site of a spinal cord injury, can project on to locate their pre-injury pathways and targets, and thereby restore function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.