Abstract

We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body alpha2- and alpha1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmill running (90 min), and in recovery. Running increased alpha1-AMPK kinase activity, phosphorylation (P) of AMPK, and acetyl-CoA carboxylase (ACC)beta in alpha2-WT and alpha2-KO muscles and increased alpha2-AMPK kinase activity in alpha2-WT. In alpha2-KO muscles, AMPK-P and ACCbeta-P were markedly lower compared with alpha2-WT. However, in alpha1-WT and alpha1-KO muscles, AMPK-P and ACCbeta-P levels were identical at rest and increased similarly during exercise in the two genotypes. The alpha2-KO decreased peroxisome-proliferator-activated receptor gamma coactivator (PGC)-1alpha, uncoupling protein-3 (UCP3), and hexokinase II (HKII) transcription at rest but did not affect exercise-induced transcription. Exercise increased the mRNA content of PGC-1alpha, Forkhead box class O (FOXO)1, HKII, and pyruvate dehydrogenase kinase 4 (PDK4) similarly in alpha2-WT and alpha2-KO mice, whereas glucose transporter GLUT 4, carnitine palmitoyltransferase 1 (CPTI), lipoprotein lipase, and UCP3 mRNA were unchanged by exercise in both genotypes. CPTI mRNA was lower in alpha2-KO muscles than in alpha2-WT muscles at all time-points. In alpha1-WT and alpha1-KO muscles, running increased the mRNA content of PGC-1alpha and FOXO1 similarly. The alpha2-KO was associated with lower muscle adenosine 5'-triphosphate content, and the inosine monophosphate content increased substantially at the end of exercise only in alpha2-KO muscles. In addition, subcutaneous injection of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) increased the mRNA content of PGC-1alpha, HKII, FOXO1, PDK4, and UCP3, and alpha2-KO abolished the AICAR-induced increases in PGC-1alpha and HKII mRNA. In conclusion, KO of the alpha2- but not the alpha1-AMPK isoform markedly diminished AMPK activation during running. Nevertheless, exercise-induced activation of the investigated genes in mouse skeletal muscle was not impaired in alpha1- or alpha2-AMPK KO muscles. Although it cannot be ruled out that activation of the remaining alpha-isoform is sufficient to increase gene activation during exercise, the present data do not support an essential role of AMPK in regulating exercise-induced gene activation in skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.