Abstract

This article focuses on the relevance of the effect of ambient temperature and annealing in the context of compact modeling of metal oxide resistive random access memory (RRAM) devices. The ambient temperature affects the conduction characteristic of resistive switching memories, so it becomes an essential factor to include when adjusting the experimental data. Reported the fabricated results and memory switching parameters with the defined set (Vset) and reset (Vreset) transition voltages for the fabricated annealed HfO2-based RRAM. Additionally, to illustrate the importance of this characteristic in the form of the I-V curve, the Stanford model (SFM) for RRAM devices is enhanced by incorporating the annealing temperature as an additional parameter in the script of the Verilog-A model. Stanford and modified Stanford model (MSFM) are analyzed at the device level using cadence circuit simulator and implemented in the nonvolatile memory circuit (3 *3 memory arrays). Results confirmed that the experimental switching voltages, Vset, Vreset are 1.7 V, −0.8 V. These values are well suited along the simulated MSFM switching voltages of, Vset, Vreset (1.8 V, −0.7 V). The mean error percentage of the MSF is 18.42%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.